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Cardiac electrophysiology requires the processing of several patient-specific data points in 
real time to provide an accurate diagnosis and determine an optimal therapy. Expanding 
beyond the traditional tools that have been used to extract information from patient-specific 
data, machine learning offers a new set of advanced tools capable of revealing previously 
unknown data patterns and features. This new tool set can substantially improve the speed 
and level of confidence with which electrophysiologists can determine patient-specific diag-
noses and therapies. The ability to process substantial amounts of data in real time also paves 
the way to novel techniques for data collection and visualization. Extended realities such as 
virtual and augmented reality can now enable the real-time visualization of 3-dimensional 
images in space. This enables improved preprocedural planning and intraprocedural inter-
ventions. Machine learning supplemented with novel visualization technologies could sub-
stantially improve patient care and outcomes by helping physicians to make more informed 
patient-specific decisions. This article presents current applications of machine learning and 
their use in cardiac electrophysiology. (Tex Heart Inst J 2022;49(2):e217576)

M achine learning (ML) provides new tools for analyzing data with use of 
advanced signal-processing and statistical techniques. Cardiac electro-
physiologists use signal-processing tools to interpret real-time data and to 

help them diagnose, treat, and manage abnormal cardiac rhythms. These data can 
include 12-lead electrocardiograms (ECGs), intracardiac electrograms, fluoroscopic 
images, 3-dimensional (3D) electroanatomic maps, and several other types of patient-
specific data. Machine learning algorithms are capable of interpreting these heavily 
intertwined data to assist the physician in making more informed decisions.
 Implicit in ML methods is that relevant features of the input data that are indicative 
of class (for example, QRS widths, PR intervals, and waveform morphologies on ECG 
tracings) are known. These features are often empirically or analytically derived by 
experts in the field who use traditional signal-processing techniques and who under-
stand well the electrophysiologic behaviors underlying cardiac function. However, it is 
often unclear what features of the data are most important for predicting the desired 
output. The best features can be determined through informed guesses or directly 
learned from the data, accurate classification being the end goal. The most advanced 
supervised learning methods, such as deep neural networks and convolutional neu-
ral networks (CNNs), use this idea to achieve state-of-the-art results in ML.1 These 
algorithms can be applied to classification and regression tasks, making them highly 
versatile and adaptable. Although the algorithms provide excellent accuracy, they do 
so by learning features of the data that can be difficult to interpret and provide little 
insight into the underlying problem. These methods also require considerable input-
output pairs to properly train the networks to learn a function between an input and 
an output.
 This article presents current applications of ML in electrophysiology and their use 
in cardiac electrophysiology. A schematic summary is provided in Figure 1.2
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Machine Learning Applications 
in Electrophysiology

Predictive Diagnosis from Surface Leads
A 12-lead ECG provides important information about 
the health of the heart and contains clues about how 
to treat cardiac disease. Interpreting electrograms is an 
art that relies on the science of measuring several ECG 
intervals and the intricate interdependence among the 
12 channels. The current methods for interpreting an 
ECG are rule-based and can be challenging to imple-
ment in a standard and uniform way because of patient-
specific differences. Machine learning algorithms can 
provide quick, accurate diagnoses and can interpret 
ECGs more eff iciently than a clinician can. For ex-
ample, a deep neural network trained on 91,232 single-
lead ECGs from 53,549 patients was shown to classify 
rhythms with sensitivity greater than that of cardiolo-
gists.3 Other CNNs and recurrent neural networks have 
been applied to smaller ECG datasets to classify atrial 
fibrillation (AF) and flutter4-6 and to distinguish them 
from other rhythms, with sensitivities ranging from 
80% to 95%.
 Structural changes in the heart indicative of disease 
onset can cause subtle changes on recorded ECGs. 
Using these changes, ML algorithms can predict the 
onset of disease. In a study that included 180,922 

patients, a CNN was able to predict the onset of AF 
by processing sinus rhythm electrograms before the 
detection of AF.7 The authors reported a sensitivity of 
82.3% (range, 80.9%–83.6%) and specificity of 83.4% 
(range, 83.0%–83.8%) when using all sinus rhythm 
electrograms obtained before the detected fibrillatory 
event. Impressively, when using only 10 seconds of sinus 
rhythm, the algorithm was able to predict the onset of 
AF with a sensitivity of 79.0% (range, 77.5%–80.4%) 
and specificity of 79.5% (range, 79.0%–79.9%).
 Another CNN that was developed to estimate the 
age and sex of a patient by using 10 seconds of ECG 
recordings was able to predict age with 90.4% accuracy 
and predict age within 7 years of the patient’s actual 
age.7 Marked deviations, such as in older patients, could 
be indicative of comorbidities. Therefore, the network 
may serve as a metric for evaluating overall health, thus 
highlighting the potential for gaining interesting new 
insights with ML.
 Machine learning algorithms have also been used to 
reconstruct 12-lead ECGs from intracardiac electro-
grams collected from a single lead.8 In a retrospective, 
diagnostic electrophysiologic study of 14 patients, a 
concurrent electrogram and 12-lead ECG signals were 
used to compute the transformation from electrogram 
to ECG and vice versa. The signals were separated into 
discrete time blocks containing a single heartbeat. The 
data blocks were then converted into the time-frequency 
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Fig. 1  Diagram shows roles of machine learning and extended reality in cardiac electrophysiology. Three-dimensional electroanatomic 
mapping combined with traditional imaging techniques and diagnostic techniques creates a large amount of information that needs to be 
processed in real time to improve the accuracy of diagnoses and therapies. Machine learning enables the improved accuracy of 
diagnoses by using a large amount of data obtained during procedures. With use of machine-learning techniques (for example, 
supervised and unsupervised learning) and convolutional neural networks (CNN), specific, previously unknown features of data can 
be extracted and used to make a predictive diagnosis and deliver patient-specific therapy. A large amount of data also warrants novel 
methods of visualization. Extended realities such as augmented reality (AR), virtual reality (VR), and mixed reality (MR) can substantially 
augment data available to the operator in inpatient and outpatient settings. 
 

Image of 3-dimensional electroanatomic map adapted with permission from Kim YH, Chen SA, Ernst S, Guzman CE, Han S, Kalarus Z, 
et al. 2019 APHRS expert consensus statement on three-dimensional mapping systems for tachycardia developed in collaboration with 
HRS, EHRA, and LAHRS. J Arrhythm 2020;36(2):215-70.2
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domain to produce image-like spectrograms. These 
were then fed into a convolutional encoder-decoder 
neural network model—a specific type of CNN—to 
learn a function between electrogram and ECG signals. 
For each patient, the algorithm was trained on a small 
dataset from 14 patients and validated on the remaining 
dataset per patient. This enabled the computation of 
the 12-lead ECG of previously recorded arrhythmic epi-
sodes after training the algorithm for a short amount of 
time in an inpatient setting. From a set of 5 electrogram 
channels that were obtained from a diagnostic catheter 
placed in the coronary sinus and used as input, 12-lead 
ECG signals were reconstructed for 14 patients, with an 
average Pearson correlation coefficient greater than 0.9 
for every patient. The reverse problem of reconstruct-
ing 5 electrogram leads from a 12-lead ECG was also 
shown, with a correlation coefficient greater than 0.9 
for most patients.

Patient-Specific Adaptive Therapy
The treatment and management of abnormal heart 
rhythms with the use of implanted devices, ablative 
techniques, and drugs can be greatly improved by 
using ML algorithms. In a retrospective analysis of 
481 patients who underwent cardiac resynchronization 
therapy,9 a random forest model accurately predicted 
clinical outcomes after a given therapy by incorporat-
ing patient-specif ic features. In a different study10 of 
1,510 patients undergoing cardiac resynchronization 
therapy (CRT), random forest classifiers were also used 
to create a SEMMELWEIS-CRT score that predicted 
1- to 5-year all-cause mortality rates. The algorithm 
using this score performed significantly better than al-
gorithms using other scores, with a mean area under 
the curve of 0.785. In another study11 that compared 
multiple models to improve patient selection for CRT, 
a naïve Bayes algorithm incorporating patient-specific 
variables was used to predict the outcomes of a thera-
py. The algorithm outperformed clinical guidelines in 
predicting survival free from a composite endpoint of 
death, heart transplant, or placement of a left ventricular 
assist device.
 Accurately identifying and ablating the focus of AF 
could possibly improve patient outcomes and reduce 
the frequency of recurrent AF. Machine learning strat-
egies have been implemented to better guide physicians 
in performing cardiac ablations. In a small 5-patient 
study,12 electroanatomic mapping data were combined 
with patients’ computed tomographic (CT) scans to 
identify with high confidence areas for ablation. Elec-
troanatomic maps and magnetic resonance imaging 
(MRI) data were used to create an augmented set of 
features that was then used in a random-forest model 
to identify areas for ablation, with a mean sensitivity of 
82.4% and mean specificity of 99.2%. A similar strat-
egy involves use of a multiscale-simulation algorithm 

to identify optimal ablation sites.13 This algorithm, 
called Optimal Target Identification via Modelling of 
Arrhythmogenesis (OPTIMA), simulates AF on patient- 
specific maps derived from MRI maps, and it computes 
the minimum set of ablations needed to extinguish AF 
in silico.13 Supervised ML is used in this algorithm 
to classify areas of atrial f ibrosis in late gadolinium- 
enhanced cardiac magnetic resonance images.14 This ap-
proach has also been used to predict recurrence of AF 
after pulmonary vein isolation, with a mean sensitivity 
of 82% and mean specificity of 89%.15

 An enormous amount of data is generated in both in-
patient and outpatient settings. With the advent of lead-
less systems capable of multisite sensing and pacing,16 
even more data are bound to be generated. These data 
include patient history; billing data; images obtained 
from ultrasonographic, CT, and MRI scans; electro-
physiologic data obtained invasively or noninvasively; 
diagnoses; and several other types of patient-specif ic 
information. The disconnect between these seemingly 
disparate datasets may explain why therapy and diagno-
sis are algorithmic and not necessarily patient-specific. 
Machine learning algorithms applied to healthcare data 
may help provide patient-specific care by bridging the 
gaps in patient data collected from multiple sources.
 Machine learning algorithms are trained on large 
datasets. Newer technologies enable the collection 
and visualization of data that could not be previously 
obtained. The combination of 3-dimensional (3D) 
electroanatomic mapping with use of CT scans and 
intracardiac echocardiographic imaging may dimin-
ish reliance on potentially harmful fluoroscopic imag-
ing during procedures. Although the resulting maps 
carry a substantial amount of spatiotemporal data, only 
a projection of such maps can be visualized on a 2- 
dimensional (2D) monitor. Newer technologies, such 
as virtual reality (VR), augmented reality (AR), and 
mixed reality (MR), aim to address this issue.

A New Reality in Visualization
Imaging is an integral part of any electrophysiologic 
procedure. Traditional f luoroscopic imaging has been 
associated with an increased risk of tissue damage and 
cancer for both doctors and patients.17 In addition, vi-
sualizing multiple projections of a 3D object through a 
2D image has always been challenging. The combina-
tion of 3D electroanatomic mapping with tools such as 
intracardiac echocardiographic imaging has catalyzed a 
shift towards nonfluoroscopic procedures.
 Because of advances in visualization tools, it is now 
possible to see and interact with these 3D images. Ho-
lographic imaging technology (RealView Imaging) has 
been used in visualizing and planning cardiac proce-
dures.18 This technology enables the visualization and 
viewing of static and dynamic images, as well as inter-
action with segmented images such as those obtained 
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from a CT scan. During an inpatient procedure, holo-
graphic images can be visualized near the patient so that 
an appropriate diagnosis can be made or an intervention 
performed in combination with other available data.
 Another approach to the visualization of 3D images 
involves extended realities. Extended realities can in-
clude VR, in which a virtual environment is set up for 
interacting with and visualizing images; AR, in which 
the visualization is overlaid on the true observable space; 
and MR, in which a virtual environment and augment-
ed images are overlaid together on the observable space. 
These extended realities may offer substantial improve-
ments over current visualization capabilities and enable 
better visualization of human anatomy. For example, 
in a project by Case Western University, the Stanford 
Virtual Heart is visualized on VR (Lighthaus, Inc.19) 
and MR (HoloAnatomy20) platforms with use of Mi-
crosoft HoloLens 2 smartglasses in order to better study, 
understand, and interact with human anatomy, and in 
particular cardiac anatomy.
 Preprocedural planning can also be substantially en-
hanced with use of extended realities. In a recent study,21 
the use of VR in preprocedural surgical planning was 
evaluated in 6 patients. By visualizing and viewing 
immersive 3D images of segment CT scans  through 
CardioVR technology (Medical VR), cardiothoracic 
surgeons were able to determine the optimal location 
for surgical access and the spatial orientation of various 
organs.
 Extended realities could provide valuable informa-
tion during procedures. The CommandEP system 
(SentiAR), recently cleared for use by the United States 
Food and Drug Administration, combines electroana-
tomic maps with holographic imaging of the heart. In 
a small prospective study of 10 patients undergoing 
catheter ablation,22 the system successfully visualized 
3D images of CT scans obtained before the procedure 
and overlaid them with electroanatomic maps. Using 
a head-mounted display, the user could also view cath-
eters in real time, which is optimal when navigating 
catheters and choosing an ablation zone. 

Conclusion
As ML algorithms are developed, validated, and im-
plemented in low-power hardware, they will become 
essential at every step in patients’ health management 
and will lead to the identif ication of various health 
conditions and patient-specif ic therapies. As the use 
of ML-based tools in the daily practice of cardiologists 
increases, data-driven methodologies will continue to 
advance. Moreover, once adequately validated, those 
ML-based tools will facilitate daily clinical workflows, 
increase patient satisfaction, and enhance the early de-
tection and correct interpretation of findings, ultimately 
leading to improved patient outcomes. The same holds 

true for AR and VR technologies, which have provided 
exciting new directions for streamlining electrophysi-
ologic procedures.
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